How Many Trees?
Time Limit: 2000/1000 MS (Java/Others)????Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3380????Accepted Submission(s): 1958
Problem Description
A binary search tree is a binary tree with root k such that any node v reachable from its left has label (v) <label (k) and any node w reachable from its right has label (w) > label (k). It is a search structure which can find a node with label x in O(n log n) average time,where n is the size of the tree (number of vertices).
Given a number n,can you tell how many different binary search trees may be constructed with a set of numbers of size n such that each element of the set will be associated to the label of exactly one node in a binary search tree?
?
Input
The input will contain a number 1 <= i <= 100 per line representing the number of elements of the set.
?
Output
You have to print a line in the output for each entry with the answer to the previous question.
?
Sample Input
1 2 3
?
Sample Output
1 2 5
?
题意:给出一个n,每个节点的编号为1~n,问n个节点的二叉搜索树有多少种?
题解:和hdoj 1023一模一样啊,卡特兰数+大数。 不了解的点击:?点击打开链接?
代码如下:
//h(n)=h(n-1)*(4*n-2)/(n+1); #include<cstdio> #include<cstring> using namespace std; int a[110][110]; //a[n][0]表示n的卡特兰数的长度,存储是反向的,a[n][1]表示个位数 void ktl()//打表 { int i,j,len; int c,s; a[1][0]=1; a[1][1]=1; a[2][0]=1; a[2][1]=2; len=1; for(i=3;i<101;++i) { c=0; for(j=1;j<=len;++j) { s=a[i-1][j]*(4*i-2)+c; c=s/10; a[i][j]=s%10; } while(c) { a[i][++len]=c%10; c/=10; } for(j=len;j>0;--j) { s=a[i][j]+c*10; a[i][j]=s/(i+1); c=s%(i+1); } while(!a[i][len]) len--; a[i][0]=len; } } int main() { ktl(); int n; while(scanf("%d",&n)!=EOF) { for(int i=a[n][0];i>0;--i) printf("%d",a[n][i]); printf("\n"); } return 0; }